Heredity for generalized power domination
نویسندگان
چکیده
In this paper, we study the behaviour of the generalized power domination number of a graph by small changes on the graph, namely edge and vertex deletion and edge contraction. We prove optimal bounds for γP,k(G − e), γP,k(G/e) and for γP,k(G − v) in terms of γP,k(G), and give examples for which these bounds are tight. We characterize all graphs for which γP,k(G− e) = γP,k(G) + 1 for any edge e. We also consider the behaviour of the propagation radius of graphs by similar modifications.
منابع مشابه
Generalized power domination of graphs
In this paper, we introduce the concept of k-power domination which is a common generalization of domination and power domination. We extend several known results for power domination to k-power domination. Concerning the complexity of the k-power domination problem, we first show that deciding whether a graph admits a k-power dominating set of size at most t is NP-complete for chordal graphs a...
متن کاملPower domination in some classes of graphs
The problem of monitoring an electric power system by placing as few phase measurement units (PMUs) in the system as possible is closely related to the well-known domination problem in graphs. The power domination number γp(G) is the minimum cardinality of a power dominating set of G. In this paper, we investigate the power domination problem in Mycielskian and generalized Mycielskian of graphs...
متن کاملGeneralized power domination: propagation radius and Sierpiński graphs
The recently introduced concept of k-power domination generalizes domination and power domination, the latter concept being used for monitoring an electric power system. The k-power domination problem is to determine a minimum size vertex subset S of a graph G such that after setting X = N [S], and iteratively adding to X vertices x that have a neighbour v in X such that at most k neighbours of...
متن کاملPower domination in cylinders, tori, and generalized Petersen graphs
A set S of vertices is defined to be a power dominating set (PDS) of a graph G if every vertex and every edge in G can be monitored by the set S according to a set of rules for power system monitoring. The minimum cardinality of a PDS of G is its power domination number. In this article, we find upper bounds for the power domination number of some families of Cartesian products of graphs: the c...
متن کاملGeneralized Power Domination in Regular Graphs
In this paper, we continue the study of power domination in graphs (see SIAM J. Discrete Math. 15 (2002), 519–529; SIAM J. Discrete Math. 22 (2008), 554–567; SIAM J. Discrete Math. 23 (2009), 1382–1399). Power domination in graphs was birthed from the problem of monitoring an electric power system by placing as few measurement devices in the system as possible. A set of vertices is defined to b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics & Theoretical Computer Science
دوره 18 شماره
صفحات -
تاریخ انتشار 2016